Saturday, October 1, 2022
Thursday, September 29, 2022
Sunday, September 25, 2022
Friday, September 23, 2022
Sunday, July 24, 2022
European Illuminated Manuscripts 6-16C - Plants, Gardens,& Landscapes
Thursday, July 21, 2022
Plants in Early American Gardens - Sea Lavender was Dried in the Fall 1793
Limonium latifolium bears clouds of delicate, lavender-blue flowers that are perfect for arrangements, both fresh and dried, and also blend beautifully in rock gardens, coastal gardens, and other well-draining sites.
Tuesday, July 19, 2022
Plants in Early American Gardens - Globe Thistle
Globe Thistle (Echinops ritro)
Globe Thistle, a Mediterranean plant long in cultivation throughout Europe, is an undemanding perennial suitable for the border or the wild garden.
Sunday, July 17, 2022
Plants for Early American Gardens - Musk Geranium
A European native, Geranium macrorrhizum can be used to scent perfumes and potpourris. In Bulgaria, musk geranium oil is called zdravetz oil, and is sometimes used in perfumery.
Wednesday, July 13, 2022
Seeds with Stories: Flax (Linum usitatissimum)
Tuesday, July 12, 2022
How Do We Know Mankind Is Made of "Starstuff?"
The answer to this fundamental question of astrophysics was discovered in 1925 by Cecilia Payne (1900-1979) & explained in her Ph.D. thesis. Payne showed how to decode the complicated spectra of starlight in order to learn the relative amounts of the chemical elements in the stars. In 1960 the distinguished astronomer Otto Struve referred to this work as “the most brilliant Ph.D. thesis ever written in astronomy.”
Cecilia Payne was born in Wendover, England. After entering Cambridge University she soon knew she wanted to study a science but was not sure which one. She then chanced to hear the astronomer Arthur Stanley Eddington (1882-1944) give a public lecture on his recent expedition to observe the 1919 solar eclipse, an observation that proved Einstein’s Theory of General Relativity.
She later recalled her exhilaration: “The result was a complete transformation of my world picture. When I returned to my room I found that I could write down the lecture word for word.” She realized that physics was for her.
Later, at Cambridge Observatory Cecilia told Professor Eddington, that she wanted to be an astronomer. He suggested a number of books for her to read, but she had already read them. Eddington then invited her to use the Observatory’s library, with access to all the latest astronomical journals.
"There is no joy more intense than that of coming upon a fact that cannot be understood in terms of currently accepted ideas." declared Cecilia Payne
Payne realized early during her Cambridge years, that a woman had little chance of advancing beyond a teaching role, & no chance at all of getting an advanced degree in England.
Women in the USA had only won the right to vote in national elections in 1920, just 3 years before Payne left England in 1923 for the United States. Here she met Professor Harlow Shapley (1885-1952), the new director of the Harvard College Observatory, who offered her a graduate fellowship.
Cecilia Payne became the 1st person to earn a PhD in astronomy from Harvard University. Her 1925 graduate thesis proposed that the Sun & other stars were made predominantly of hydrogen, & described as "the most brilliant PhD thesis ever written in astronomy." (Payne received the 1st Ph.D. in astronomy from Radcliffe College for her thesis, since Harvard did not grant doctoral degrees to women.)
But Harvard did have the world’s largest archive of stellar spectra on photographic plates. Astronomers obtain such spectra by attaching a spectroscope to a telescope. This instrument spreads starlight out into its “rainbow” of colors, spanning all the wavelengths of visible light. The wavelength increases from the violet to the red end of the spectrum, as the energy of the light decreases. A typical stellar spectrum has many narrow dark gaps where the light at particular wavelengths (or energies) is missing. These gaps are called absorption “lines,” & are due to various chemical elements in the star’s atmosphere that absorb the light coming from hotter regions below.
The study of spectra had led to the science of astrophysics. In 1859, Gustav Kirchoff & Robert Bunsen in Germany heated various chemical elements & observed the spectra of the light given off by the incandescent gas. They found that each element has its own characteristic set of spectral lines—its uniquely identifying “fingerprint.” In 1863, William Huggins in England observed many of these same lines in the spectra of the stars. The visible universe, it turned out, is made of the same chemical elements as those found on Earth.
Beginning in the 1880s, astronomers at Harvard College such as Edward Pickering, Annie Jump Cannon, Williamina Fleming, & Antonia Maury had succeeded in classifying stars according to their spectra into seven types: O, B, A, F, G, K, & M. It was believed that this sequence corresponded to the surface temperature of the stars, with O being the hottest & M the coolest. In her Ph.D. thesis (published as Stellar Atmospheres [1925]), Payne used the spectral lines of many different elements & the work of Indian astrophysicist Meghnad Saha, who had discovered an equation relating the ionization states of an element in a star to the temperature to definitively establish that the spectral sequence did correspond to quantifiable stellar temperatures. Payne also determined that stars are composed mostly of hydrogen & helium. However, she was dissuaded from this conclusion by Princeton astronomer Henry Norris Russell (1877-1957), who thought that stars surely would have the same composition as Earth. (Russell conceded in 1929 that Payne was correct.)
In principle, it seemed that one might obtain the composition of the stars by comparing their spectral lines to those of known chemical elements observed in laboratory spectra. Astronomers had identified elements like calcium & iron as responsible for some of the most prominent lines, so they naturally assumed that such heavy elements were among the major constituents of the stars. In fact, Princeton's Henry Norris Russell at Princeton had concluded that if the Earth’s crust were heated to the temperature of the Sun, its spectrum would look nearly the same.
When Cecilia Payne arrived at Harvard, a comprehensive study of stellar spectra had long been underway. Annie Jump Cannon (1863-1941) whose cataloging work was instrumental in the development of contemporary stellar classification. Annie was nearly deaf throughout her career. She was a suffragist & a member of the National Women's Party.
Annie Jump Cannon (1863-1941)
Annie had sorted the spectra of several hundred thousand stars into seven distinct classes. She had devised & ordered the classification scheme, based on differences in the spectral features. Astronomers assumed that the spectral classes represented a sequence of decreasing surface temperatures of the stars, but no one was able to demonstrate this quantitatively.
Cecilia Payne, who studied the new science of quantum physics, knew that the pattern of features in the spectrum of any atom was determined by the configuration of its electrons. She also knew that at high temperatures, one or more electrons are stripped from the atoms, which are then called ions. The Indian physicist M. N. Saha had recently shown how the temperature & pressure in the atmosphere of a star determine the extent to which various atoms are ionized.
Payne began a long project to measure the absorption lines in stellar spectra, & within two years produced a thesis for her doctoral degree, the first awarded for work at Harvard College Observatory. In it, she showed that the wide variation in stellar spectra is due mainly to the different ionization states of the atoms & hence different surface temperatures of the stars, not to different amounts of the elements. She calculated the relative amounts of eighteen elements & showed that the compositions were nearly the same among the different kinds of stars. She discovered, surprisingly, that the Sun & the other stars are composed almost entirely of hydrogen & helium, the two lightest elements. All the heavier elements, like those making up the bulk of the Earth, account for less than two percent of the mass of the stars.
Most of the mass of the visible universe is hydrogen, the lightest element, & not the heavier elements that are more prominent in the spectra of the stars! This was indeed a revolutionary discovery. Harlow Shapley sent Payne’s thesis to Professor Russell at Princeton, who informed her that the result was “clearly impossible.” To protect her career, Payne inserted a statement in her thesis that the calculated abundances of hydrogen & helium were “almost certainly not real.”
She then converted her thesis into the book Stellar Atmospheres, which was well-received by astronomers. Within a few years it was clear to everyone that her results were both fundamental & correct. Cecilia Payne had showed for the first time how to “read” the surface temperature of any star from its spectrum. She showed that Cannon’s ordering of the stellar spectral classes was indeed a sequence of decreasing temperatures & she was able to calculate the temperatures. The so-called Princeton Hertzsprung-Russell diagram, a plot of luminosity versus spectral class of the stars, could now be properly interpreted, & it became by far the most powerful analytical tool in stellar astrophysics.
From the time she finished her Ph.D. through the 1930s, Payne advised students, conducted research, & lectured—all the usual duties of a professor. Yet, because she was a woman, her only title at Harvard was “technical assistant” to Professor Harlow Shapley.
In 1933, Payne traveled to Europe to meet Russian astronomer Boris Gerasimovich, who had previously worked at the Harvard College Observatory & with whom she planned to write a book about variable stars. In Göttingen, Ger., she met Sergey Gaposchkin, a Russian astronomer who could not return to the Soviet Union because of his politics. Payne was able to find a position at Harvard for him. They married in 1934 & often collaborated on studies of variable stars. She was named a lecturer in astronomy in 1938, but even though she taught courses, they were not listed in the Harvard catalog until after World War II.
Despite being indisputably one of the most brilliant & creative astronomers of the 20C, Cecilia Payne was never elected to the elite National Academy of Sciences. But times were beginning to change. In 1956, she was finally made a full professor (the 1st woman so recognized at Harvard) & chair of the Astronomy Department.
Her fellow astronomers certainly came to appreciate her genius. In 1976, the American Astronomical Society awarded her the prestigious Henry Norris Russell Prize. In her acceptance lecture, she said, “The reward of the young scientist is the emotional thrill of being the 1st person in the history of the world to see something or to understand something.”
See:
American Museum of Natural History: Cecilia Payne & the Composition of the Stars
Encyclopedia Britannica: Cecilia Payne-Gaposchkin
Archival Collections:
Collections of Cecilia Payne- & Sergei Gaposchkin. Wolbach Library, Harvard & Smithsonian Center for Astrophysics, Cambridge, Mass.
Papers of Harlow Shapley, 1906-1966; HUG 4773.10 Box 89. Harvard University Archives, Harvard University, Cambridge, Mass.
Papers of Cecilia Helena Payne-Gaposchkin, 1924, circa 1950s-1990s, 2000; HUGB P182.5, P182.50. Harvard University Archives, Harvard University, Cambridge, Mass. Link.
Project PHaEDRA. Wolbach Library, Harvard & Smithsonian Center for Astrophysics, Cambridge, Mass. Link.
Radcliffe College Alumnae Association Records, ca.1894-2004; RG IX, Series 2, box 241. Schlesinger Library, Radcliffe Institute, Harvard University, Cambridge, Mass.
Wilbur Kitchener Jordan Records of the President of Radcliffe College, 1943-1960; RG II, Series 3, boxes 27, 60. Radcliffe College Archives, Schlesinger Library, Radcliffe Institute, Harvard University, Cambridge, Mass.
Bibliography:
Bartusiak, Marcia. 1993. “The Stuff of Stars.” The Sciences, no. September/October: 34–39.
Boyd, Sylvia. 2014. Portrait of a Binary : The Lives of Cecilia Payne & Sergei Gaposchkin. Penobscot Press.
DeVorkin, David. 2010. “Extraordinary Claims Require Extraordinary Evidence: C.H. Payne, H.N. Russell & Standards of Evidence in Early Quantitative Stellar Spectroscopy.” Journal Od Astronomical History & Heritage 13 (2): 139–44.
Gaposchkin, Cecilia Helena Payne. 1984. Cecilia Payne-Gaposchkin: An Autobiography (“The Dyer’s Hand”) & Other Recollections. Cambridge ; New York: Cambridge University Press.
Gaposchkin, Sergei. 1970. The Divine Scramble. Self-Published.
Gingerich, Owen, Katherine Haramundanis, & Dorrit Hoffleit. 2001. The Starry Universe: The Cecilia Payne-Gaposchkin Centenary. L. Davis Press.
Popova, Maria. 2017. “Stitching a Supernova: A Needlepoint Celebration of Science by Pioneering Astronomer Cecilia Payne.” Brain Pickings (blog). May 10, 2017.
Woodman, Jennifer. 2016. “Stellar Works: Searching for the Lives of Women in Science.” Dissertations & Theses, June.
"We Are Made of Starstuff.”
This landscape of “mountains” & “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s James Webb Space Telescope, this image reveals for the 1st time previously invisible areas of star birth. (NASA)
Dear old Hubble & the new James Webb Telescope, the largest space observatory to date, & thousands of scientists around the world will lead us into countless universes & 100 billion galaxies of composed of dying stars expelling dust & gas - elements & gases interchangeable with ours. We are part of infinity living on a tiny blue dot in space. “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.”
“Look again at that dot. That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every "superstar," every "supreme leader," every saint and sinner in the history of our species lived there-on a mote of dust suspended in a sunbeam.
"The Earth is a very small stage in a vast cosmic arena. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot.
"Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that help will come from elsewhere to save us from ourselves.
"The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the Earth is where we make our stand.
"It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we've ever known.”
―American astronomer Carl Sagan (1934-1996), Pale Blue Dot: A Vision of the Human Future in Space
Friday, July 1, 2022
This Day in Medieval Garden Myth & Reality
The Duke of Berry's Richest Hours.
Barthlemy of Eyck (?) And Jean Columbus
Limbourg Brothers. 1411-1416.
Condé Museum, Chantilly
July, the warmest month of the year, means harvesting crops and trimming herds. The landscape depicts the neighborhood where the rivers Boivre and Clain join. In the background, the triangular section of the Château de Poitiers in the background, preceded by the Palais des Comtes de Poitou.
Thursday, June 30, 2022
This Day in Medieval Garden Myth & Reality
ENLUMINURES EUROPE - VIe - XVIe s. - ILLUMINATED MANUSCRIPTS EUROPE
June 30th is the 181st day of the Gregorian calendar year.
It was usually the 12th day of the month of messidor in the French Republican calendar, officially called ARTICHAUT (ARTICHOKE) Day
Calligraphiae monumenta. Enlightenment: Joris Hoefnagel (also known as Georg Hufnagel), born in 1542 in Antwerp and died September 9, 1601 in Vienna (Austria), and Georg Bocskay (Hungarian, died in 1575). Date and place of publication: Vienna, Austria, 1561–1562-1591–1596. Latin manuscript illuminated on velin Getty Los Angeles, CA 90049. U.S.
Wednesday, June 29, 2022
17C Portraits Head Outside as Mankind Becomes "the Interpreter of Nature"
With the arrival of Anthony Van Dyck (1599–1641) at the court of Charles I in 1632, British portraiture took a turn toward the baroque that changed the course of British & colonial American painting in the 17-18C. The Elizabethan style had almost been completely replaced in England by the 1670s quickly giving way to a more volumetric style. In the British American colonies, this transition was copied through imported engravings after Peter Lely (1617–1680) & Godfrey Kneller (1648–1723).
This Day in Medieval Garden Myth & Reality
Sunday, June 26, 2022
History Blooms at Thomas Jefferson's Monticello
Friday, June 24, 2022
Roe v. Wade - US Supreme Court Overturns One Landmark Decision with Another Landmark Decision
17C Myth of Pomona & Vertumnus - Love Isn't Always Easy, even for Roman Garden Gods!
Pomona was the beautiful goddess of fruitful abundance in ancient Roman religion & myth. Pomona was said to be a wood nymph. The name Pomona comes from the Latin word pomum, "fruit," specifically orchard fruit. She was said to be a part of the Numia, the guardian spirits who watch over people, places, or homes. While Pomona watches over & protects fruit trees & cares for their cultivation, she is not actually associated with the harvest of fruit itself, but with tending the flourishing of the fruit trees. In artistic depictions she is generally shown with a platter of fruit or a cornucopia & perhaps her pruning knife
History Blooms at Thomas Jefferson's Monticello in Virginia
Thursday, June 23, 2022
17C Myth of Pomona & Vertumnus - Love Isn't Always Easy, even for Roman Garden Gods!
Pomona was the beautiful goddess of fruitful abundance in ancient Roman religion & myth. Pomona was said to be a wood nymph. The name Pomona comes from the Latin word pomum, "fruit," specifically orchard fruit. She was said to be a part of the Numia, the guardian spirits who watch over people, places, or homes. While Pomona watches over & protects fruit trees & cares for their cultivation, she is not actually associated with the harvest of fruit itself, but with tending the flourishing of the fruit trees. In artistic depictions she is generally shown with a platter of fruit or a cornucopia & perhaps her pruning knife
Pomona, the alluring wood nymph, actually cared nothing for the wild woods but cared only for her well-cultivated fruit filled gardens & orchards. And Pomona had a thing about men. She fenced her garden orchards, so the rude young men couldn't trample her plants & vines. She also kept her orchards enclosed, because she wanted to keep away the men who were attracted to her good looks. Even dancing satyrs(a cross between a man & a goat) were attracted to her beauty. Despite the fact that she preferred to be alone to care & nurture her trees, this beauty was continually besieged by suitors, in particular one persistent god named Vertumnus. Vertumnus had the ability to take different human guises & made numerous attempts to woo Pomona, but she turned him away each time.
The god Vertumus caught on to Pomona's aversion to men in her orchards & in her life generally. In Roman mythology, Vertumnus, the young, handsome god of changing seasons & patron of fruits, determined to win over Pomona. He could change his form at will according to Ovid's Metamorphoses (xiv). He came to her in various male disguises, which included, a reaper, an apple picker, a fisher, a solider, & more. Even with the disguises, she still never paid him the slightest bit of attention. One day Vertumnus tried a disguise as an old women. And Pomona finally allowed him to enter her garden, where he pretended to be interested in her fruit. But he finally told her he was more exquisite than her crops. After saying that, he kissed her passionately, but it wasn't enough. Vertumnus kept trying to sway her by telling her a story of a young women who rejected a boy who loved her; in despair, the boy killed hung himself, & Venus punished the girl by turning her to stone. This narrative warning of the extreme dangers of rejecting a suitor (the embedded tale of Iphis & Anaxarete) still did not seduce her. It just didn't work, of course.
The tale of Vertumnus & Pomona has been said to be the only purely Latin tale in Ovid's Metamorphoses. The subject of Vertumnus & Pomona appealed to European sculptors & painters of the 16th through the 18th centuries, providing a disguised erotic subtext in a scenario that contrasted youthful female beauty with an aged old woman. But it wasn't the old woman that ultimately won the day. In narrating the tale in the Metamorphoses, Ovid observed that the kind of kisses given by Vertumnus were never given by an old woman. In Ovid's myth, Pomona scorned the love of the woodland gods Silvanus & Picus, but finally married the brutally handsome Vertumnus.
History Blooms at Thomas Jefferson's Monticello in Virginia
Peggy Cornett at Thomas Jefferson's Monticello tells us that
The hardy annual Larkspur, Consolida ajacis, re-seeds abundantly in the Monticello Flower Gardens. Jefferson noted Larkspur blooming at Shadwell in July 1767, thought it suitable for naturalizing at Monticello "in the open ground on the west" in 1771, and sowed seed around his Roundabout flower border on April 8, 1810.
Larkspur, Consolida ajacis
Tuesday, June 21, 2022
17C Gathering Fruits & Vegetables by Jean-Baptiste de Saive II (1597-c 1642)
Sunday, June 19, 2022
Father's Day!
Spring at Longwood Gardens in Pennsylvania
Friday, June 17, 2022
Spring at Longwood Gardens in Pennsylvania
Wednesday, June 15, 2022
Spring at Longwood Gardens in Pennsylvania
Tuesday, June 14, 2022
17C Myths of Spring to Summer - Locus Amoenus Allegories by Jan Brueghel the Elder 1568-1625 & Hendrick van Balen 1575-1632
As in these paintings, allegorical characters in stories & in art of this period were often located in garden settings. The locus amoenus was one of the traditional locations of epic & chivalric literature. As a literary genre of high culture, romance or chivalric romance is a type of prose & verse narrative that was popular in the aristocratic circles of Medieval & Early Modern Europe.
Locus amoenus (Latin for "pleasant place") is a literary term which generally referring to an idealized place of safety or comfort, usually a beautiful, shady parkland or open woods, sometimes with connotations of Eden. A locus amoenus usually has 3 basic elements: trees, grass, & water. In these 2 paintings, Spring is full of flowers & Summer is filled with the practical fruits from Spring's flowers
Often, the locus amoenus garden will be in a remote setting & with only components or suggestions of a more formal, geometric, walled garden, such as the flower pots seen above. The locus amoenus can also be used to highlight the differences between urban & rural life or be a place of refuge from the processes of time & mortality. In some works, such gardens also have overtones of the regenerative powers of human sexuality marked out by flowers, & goddesses of springtime, love, & fertility. Ernst Robert Curtius formulated the concept's definition in his European Literature & the Latin Middle Ages (1953).
Jan Brueghel the Elder 1568-1625 & Hendrick van Balen 1575-1632 Summer, 1616
Monday, June 13, 2022
Spring at Longwood Gardens in Pennsylvania
Sunday, June 12, 2022
1636 Myth & Spring & Cherubs by Jan Brueghel the Younger 1601-1678 & Frans Francken the Younger 1581-1642
Here 4 seated women representing water, air, earth, & fire are surrounded by a lush landscape. The fish flowing from the water jug & the cornucopia of abundance cradled in the arms of the figure on the right correspond to the tactile elements of water & earth. The birds in the sky & trees & the accoutrements of battle in the foreground correspond to the intangible elements of fire & air. The figures, the still life objects, & the landscape work together as a unified scene, yet two different artists worked to create this painting. Frequent collaborators, the skilled figure painter Frans Francken II painted the women & background figures, & Jan Brueghel the Younger described the landscape.
Jan Brueghel the Younger (Flemish, 1601-1678) Frans Francken the Younger (Flemish, 1581-1642) A remote Landscape Setting with an Allegory of Water and Earth
Such collaboration between artists was common in Antwerp during the 1600s, as artists often specialized in either landscape or figure painting. Flemish artists of the time repeatedly painted representations of the 4 elements, suggesting that it was a popular subject with buyers. Brueghel the Younger depicted the senses, the elements, or the seasons as allegories many times throughout his career, either together or individually.
1630s. A remote Landscape Setting with Ceres (Allegory of Earth). Landscape by Jan Brueghel the Younger figures after Hendrick van Balen.
Here, earth is represented by the goddess Ceres, who is surrounded with a satyr, putti, & a figure holding a sheaf of wheat. Ceres, whose name means "creator," was the goddess of agriculture, worshiped over a large part of ancient Italy.
Those winged toddlers over Ceres' head in the painting clutching her crown, are they religious cherubs or secular putti? A putto (pl. putti) is a figure of a human toddler, usually male, often naked with wings, depicted especially in Italian Renaissance & Baroque art. The Latin word "putus" means boy or child. During the early modern period, artist Donatello revived & popularized putti figures in Florence during the 1420s.
Neroccio De' Landi (1447-1500) Two Putti, 1490-1510
In the European culture of the 1400s & 1500s, Cherubs & Putti had distinctly different roles. Biblically, Cherubs & Seraphs (Cherubim & Seraphim) were sacred angels in heaven closest to God. Putti, arose from Greco-Roman classical myths, not the Christian tradition, and were associated with Eros or Cupid as well as with the Muse Erato of lyric & love poetry.
Raphael Raffaello Sanzio da Urbino (1483–1520), Sistine Cherubs
As in these paintings, allegorical characters in stories & in art of this period were often located in garden settings. The locus amoenus was one of the traditional locations of epic & chivalric literature. As a literary genre of high culture, romance or chivalric romance is a type of prose & verse narrative that was popular in the aristocratic circles of Medieval & Early Modern Europe. Locus amoenus (Latin for "pleasant place") is a literary term which generally referring to an idealized place of safety or comfort, usually a beautiful, shady parkland or open woods, sometimes with connotations of Eden. A locus amoenus usually has 3 basic elements: trees, grass, & water.
Often, the locus amoenus garden will be in a remote setting & with only components or suggestions of a more formal, geometric, walled garden. These paintings employ this setting. The locus amoenus can also be used to highlight the differences between urban & rural life or be a place of refuge from the processes of time & mortality. In some works, such gardens also have overtones of the regenerative powers of human sexuality marked out by flowers, & goddesses of springtime, love, & fertility. Ernst Robert Curtius formulated the concept's definition in his European Literature & the Latin Middle Ages (1953).
About these confusing Breughels -
Pieter Bruegel (also Brueghel) 1525-1569 was a Netherlandish Renaissance painter & printmaker known for his landscapes & peasant scenes (later called genre painting). From 1559, he dropped the 'h' from his name & signed his paintings as Bruegel.
Pieter the Elder had 2 sons: Pieter Brueghel the Younger 1564 -1636 & Jan Brueghel the Elder 1568-1625 (both changed their name to Brueghel). Their grandmother, Mayken Verhulst, trained the sons because "the Elder" died when both were very small children. The older brother, Pieter Brueghel, copied his father's style but without the same great talent. Jan was more successful, as he turned to the Baroque style & collaborated with many fine artists.
Pieter Brueghel the Younger or Pieter Bruegel the Younger (before 1616 he signed his name as 'Brueghel' & after 1616 as 'Breughel') 1564 -1636 was a Flemish painter, known for numerous copies after his father Pieter Bruegel the Elder's work as well as his original compositions. The large output of his studio, which produced for the local & export market, contributed to the international spread of his father's imagery.
Jan Brueghel the Elder 1568-1625 was a Flemish painter, son of Pieter Bruegel the Elder & father of Jan Brueghel the Younger 1601-1678. Many of his paintings are collaborations in which figures by other painters were placed in landscapes painted by Jan Brueghel; in other works, Brueghel painted the figures into another artist's landscape or architectural interior. The most famous of his collaborators was Peter Paul Rubens who collaborated on about 25 paintings.
Jan Brueghel the Younger 1601-1678 was a Flemish Baroque painter. Jan the Younger's best works are his extensive landscapes, either under his own name or made for other artists such as Hendrick van Balen as backgrounds. He collaborated with a number of prominent artists including Rubens, Hendrick van Balen (1575–1632), Adriaen Stalbemt (1580–1682), Lucas Van Uden (1596–1672), David Teniers the Younger, and his father-in-law Abraham Janssens. His pupils were his older sons Abraham , 1631-1690, Philips, & Jan Peeter 1628-1664, his nephew Jan van Kessel, & his younger brother Ambrosius.