Tuesday, February 28, 2023
"Lent's Temptations" - A Firm Christ & an Unrelenting Satan 12C
Monday, February 27, 2023
"Lent's Temptations" - Christ, Satan & a negotiating Angel 12C
Spanish The Metropolitan Museum of Art
The Met tells us that the fresco comes from "The hermitage of San Baudelio de Berlanga was constructed in the beginning of the 11C at the heart of the frontier between Islamic & Christian lands. One hundred fifty years later, its extraordinary palm-vaulted interior was transformed with the addition of two cycles of vibrant paintings: an extensive life-cycle of Christ at the top & scenes of hunting & animals at the bottom, derived from Islamic art. The large figures of the biblical cycle, the clear outlines, & the radiant colors ensured that the story would be legible from the floor. The fresco conflates three episodes from Christ's Temptation. At the left, the Devil dares Christ to turn stones into bread. In the middle, Satan challenges Christ, standing on the gable of the Temple, to throw himself down. The angel talking to a demon at the right refers to the last temptation of Christ, who, after refusing to worship the Devil, is ministered by angels."
“The Spirit drove Jesus out into the desert,
& he remained in the desert for forty days,
tempted by Satan.
He was among wild beasts,
& the angels ministered to him.”
Mark 1:12-13
All 3 Gospels relate that Jesus spent a period of 40 days & nights in the desert immediately following His Baptism in the Jordan by John the Baptist & the dramatic recognition given by Heaven to this event. The number 40 obviously has resonance with such Old Testament events as the 40 days & nights of the Great Flood (Genesis 7:9), the 40 days & nights that Moses was on Mount Sinai receiving the Ten Commandments from God (Exodus 24:18) & the 40 years in which the Hebrews wandered in the wilderness (Numbers 14:32-34). Mark’s reference to the Temptation of Jesus is the shortest of the three. Matthew (Matthew 4:1-11) & Luke (Luke 4:1-13) both describe in detail the temptations tried by Satan, temptations to power & pride, which Jesus resisted. All three agree that at the end of these 40 days & nights, Jesus was tired & hungry.
Saturday, February 25, 2023
"Lent's Temptations" - Temple Temptation 15C
“The Spirit drove Jesus out into the desert,
& he remained in the desert for forty days,
tempted by Satan.
He was among wild beasts,
& the angels ministered to him.”
Mark 1:12-13
All three Gospels relate that Jesus spent a period of 40 days & nights in the desert immediately following His Baptism in the Jordan by John the Baptist & the dramatic recognition given by Heaven to this event. The number 40 obviously has resonance with such Old Testament events as the 40 days & nights of the Great Flood (Genesis 7:9), the 40 days & nights that Moses was on Mount Sinai receiving the Ten Commandments from God (Exodus 24:18) & the 40 years in which the Hebrews wandered in the wilderness (Numbers 14:32-34). Mark’s reference to the Temptation of Jesus is the shortest of the three. Matthew (Matthew 4:1-11) & Luke (Luke 4:1-13) both describe in detail the temptations tried by Satan, temptations to power & pride, which Jesus resisted. All three agree that at the end of these 40 days & nights, Jesus was tired & hungry.
text-align: center;">
Sandro Botticelli (Italian, c. 1481-1482), Three Temptations of Christ - Detail c. 1481. Vatican City, Sistine Chapel. During His 40 days of fasting & praying in the Wilderness, Satan tempted Jesus: to make bread out of stones to relieve his own hunger; to jump from a pinnacle & rely on angels to break his fall (both Luke & Matthew have Satan quote Psalm 91:11–12 to indicate that God had promised this assistance); & to worship Satan in return for all the kingdoms of the world.
When Satan tempted Jesus to jump from the pinnacle of the temple, Satan said,
"If thou be the Son of God, cast thyself down from hence: For it is written, He shall give his angels charge over thee, to keep thee: And in their hands they shall bear thee up, lest at any time thou dash thy foot against a stone." (Luke 4:9–13) citing Psalms 91:12. Once more, Jesus maintained his integrity & responded by quoting scripture, saying, "Again it is written, 'You shall not put the Lord, your God, to the test.'" (Matthew 4:7) quoting Deuteronomy 6:16.
Sandro Botticelli (Italian, c. 1481-1482), Three Temptations of Christ - Detail c. 1481. Vatican City, Sistine Chapel. Satan stands with Jesus on top of the Temple in Jerusalem. Sandro Botticelli, Italian, c. 1481-1482 Vatican City, Sistine Chapel
Friday, February 24, 2023
"Lent's Temptations" - Christ & Satan 14C
“The Spirit drove Jesus out into the desert,
& he remained in the desert for forty days,
tempted by Satan.
He was among wild beasts,
& the angels ministered to him.”
Mark 1:12-13
All 3 Gospels relate that Jesus spent a period of 40 days & nights in the desert immediately following His Baptism in the Jordan by John the Baptist & the dramatic recognition given by Heaven to this event. The number 40 obviously has resonance with such Old Testament events as the 40 days & nights of the Great Flood (Genesis 7:9), the 40 days & nights that Moses was on Mount Sinai receiving the Ten Commandments from God (Exodus 24:18) & the 40 years in which the Hebrews wandered in the wilderness (Numbers 14:32-34). Mark’s reference to the Temptation of Jesus is the shortest of the three. Matthew (Matthew 4:1-11) & Luke (Luke 4:1-13) both describe in detail the temptations tried by Satan, temptations to power & pride, which Jesus resisted. All three agree that at the end of these 40 days & nights, Jesus was tired & hungry.
"Filled with the Holy Spirit, Jesus returned from the Jordan
and was led by the Spirit into the desert for forty days,
to be tempted by the devil.
He ate nothing during those days,
and when they were over he was hungry.
The devil said to him,
"If you are the Son of God,
command this stone to become bread."
Jesus answered him,
"It is written, One does not live on bread alone."
Then he took him up and showed him
all the kingdoms of the world in a single instant.
The devil said to him,
"I shall give to you all this power and glory;
for it has been handed over to me,
and I may give it to whomever I wish.
All this will be yours, if you worship me."
Jesus said to him in reply,
"It is written:
You shall worship the Lord, your God,
and him alone shall you serve."
Then he led him to Jerusalem,
made him stand on the parapet of the temple, and said to him,
"If you are the Son of God,
throw yourself down from here, for it is written:
He will command his angels concerning you, to guard you,
and:
With their hands they will support you,
lest you dash your foot against a stone."
Jesus said to him in reply,
"It also says,
You shall not put the Lord, your God, to the test."
When the devil had finished every temptation,
he departed from him for a time.”
Luke 4:1-13
Thursday, February 23, 2023
"Lent's Temptations" - Exhausted & Hungry Christ & Satan 12C
“The Spirit drove Jesus out into the desert,
& he remained in the desert for forty days,
tempted by Satan.
He was among wild beasts,
& the angels ministered to him.”
Mark 1:12-13
All 3 Gospels relate that Jesus spent a period of 40 days & nights in the desert immediately following His Baptism in the Jordan by John the Baptist & the dramatic recognition given by Heaven to this event. The number 40 obviously has resonance with such Old Testament events as the 40 days & nights of the Great Flood (Genesis 7:9), the 40 days & nights that Moses was on Mount Sinai receiving the Ten Commandments from God (Exodus 24:18) & the 40 years in which the Hebrews wandered in the wilderness (Numbers 14:32-34). Mark’s reference to the Temptation of Jesus is the shortest of the three. Matthew (Matthew 4:1-11) & Luke (Luke 4:1-13) both describe in detail the temptations tried by Satan, temptations to power & pride, which Jesus resisted. All three agree that at the end of these 40 days & nights, Jesus was tired & hungry.
Saturday, October 1, 2022
Thursday, September 29, 2022
Sunday, September 25, 2022
Friday, September 23, 2022
Sunday, July 24, 2022
European Illuminated Manuscripts 6-16C - Plants, Gardens,& Landscapes
Thursday, July 21, 2022
Plants in Early American Gardens - Sea Lavender was Dried in the Fall 1793
Limonium latifolium bears clouds of delicate, lavender-blue flowers that are perfect for arrangements, both fresh and dried, and also blend beautifully in rock gardens, coastal gardens, and other well-draining sites.
Tuesday, July 19, 2022
Plants in Early American Gardens - Globe Thistle
Globe Thistle (Echinops ritro)
Globe Thistle, a Mediterranean plant long in cultivation throughout Europe, is an undemanding perennial suitable for the border or the wild garden.
Sunday, July 17, 2022
Plants for Early American Gardens - Musk Geranium
A European native, Geranium macrorrhizum can be used to scent perfumes and potpourris. In Bulgaria, musk geranium oil is called zdravetz oil, and is sometimes used in perfumery.
Wednesday, July 13, 2022
Seeds with Stories: Flax (Linum usitatissimum)
Tuesday, July 12, 2022
How Do We Know Mankind Is Made of "Starstuff?"
The answer to this fundamental question of astrophysics was discovered in 1925 by Cecilia Payne (1900-1979) & explained in her Ph.D. thesis. Payne showed how to decode the complicated spectra of starlight in order to learn the relative amounts of the chemical elements in the stars. In 1960 the distinguished astronomer Otto Struve referred to this work as “the most brilliant Ph.D. thesis ever written in astronomy.”
Cecilia Payne was born in Wendover, England. After entering Cambridge University she soon knew she wanted to study a science but was not sure which one. She then chanced to hear the astronomer Arthur Stanley Eddington (1882-1944) give a public lecture on his recent expedition to observe the 1919 solar eclipse, an observation that proved Einstein’s Theory of General Relativity.
She later recalled her exhilaration: “The result was a complete transformation of my world picture. When I returned to my room I found that I could write down the lecture word for word.” She realized that physics was for her.
Later, at Cambridge Observatory Cecilia told Professor Eddington, that she wanted to be an astronomer. He suggested a number of books for her to read, but she had already read them. Eddington then invited her to use the Observatory’s library, with access to all the latest astronomical journals.
"There is no joy more intense than that of coming upon a fact that cannot be understood in terms of currently accepted ideas." declared Cecilia Payne
Payne realized early during her Cambridge years, that a woman had little chance of advancing beyond a teaching role, & no chance at all of getting an advanced degree in England.
Women in the USA had only won the right to vote in national elections in 1920, just 3 years before Payne left England in 1923 for the United States. Here she met Professor Harlow Shapley (1885-1952), the new director of the Harvard College Observatory, who offered her a graduate fellowship.
Cecilia Payne became the 1st person to earn a PhD in astronomy from Harvard University. Her 1925 graduate thesis proposed that the Sun & other stars were made predominantly of hydrogen, & described as "the most brilliant PhD thesis ever written in astronomy." (Payne received the 1st Ph.D. in astronomy from Radcliffe College for her thesis, since Harvard did not grant doctoral degrees to women.)
But Harvard did have the world’s largest archive of stellar spectra on photographic plates. Astronomers obtain such spectra by attaching a spectroscope to a telescope. This instrument spreads starlight out into its “rainbow” of colors, spanning all the wavelengths of visible light. The wavelength increases from the violet to the red end of the spectrum, as the energy of the light decreases. A typical stellar spectrum has many narrow dark gaps where the light at particular wavelengths (or energies) is missing. These gaps are called absorption “lines,” & are due to various chemical elements in the star’s atmosphere that absorb the light coming from hotter regions below.
The study of spectra had led to the science of astrophysics. In 1859, Gustav Kirchoff & Robert Bunsen in Germany heated various chemical elements & observed the spectra of the light given off by the incandescent gas. They found that each element has its own characteristic set of spectral lines—its uniquely identifying “fingerprint.” In 1863, William Huggins in England observed many of these same lines in the spectra of the stars. The visible universe, it turned out, is made of the same chemical elements as those found on Earth.
Beginning in the 1880s, astronomers at Harvard College such as Edward Pickering, Annie Jump Cannon, Williamina Fleming, & Antonia Maury had succeeded in classifying stars according to their spectra into seven types: O, B, A, F, G, K, & M. It was believed that this sequence corresponded to the surface temperature of the stars, with O being the hottest & M the coolest. In her Ph.D. thesis (published as Stellar Atmospheres [1925]), Payne used the spectral lines of many different elements & the work of Indian astrophysicist Meghnad Saha, who had discovered an equation relating the ionization states of an element in a star to the temperature to definitively establish that the spectral sequence did correspond to quantifiable stellar temperatures. Payne also determined that stars are composed mostly of hydrogen & helium. However, she was dissuaded from this conclusion by Princeton astronomer Henry Norris Russell (1877-1957), who thought that stars surely would have the same composition as Earth. (Russell conceded in 1929 that Payne was correct.)
In principle, it seemed that one might obtain the composition of the stars by comparing their spectral lines to those of known chemical elements observed in laboratory spectra. Astronomers had identified elements like calcium & iron as responsible for some of the most prominent lines, so they naturally assumed that such heavy elements were among the major constituents of the stars. In fact, Princeton's Henry Norris Russell at Princeton had concluded that if the Earth’s crust were heated to the temperature of the Sun, its spectrum would look nearly the same.
When Cecilia Payne arrived at Harvard, a comprehensive study of stellar spectra had long been underway. Annie Jump Cannon (1863-1941) whose cataloging work was instrumental in the development of contemporary stellar classification. Annie was nearly deaf throughout her career. She was a suffragist & a member of the National Women's Party.
Annie Jump Cannon (1863-1941)
Annie had sorted the spectra of several hundred thousand stars into seven distinct classes. She had devised & ordered the classification scheme, based on differences in the spectral features. Astronomers assumed that the spectral classes represented a sequence of decreasing surface temperatures of the stars, but no one was able to demonstrate this quantitatively.
Cecilia Payne, who studied the new science of quantum physics, knew that the pattern of features in the spectrum of any atom was determined by the configuration of its electrons. She also knew that at high temperatures, one or more electrons are stripped from the atoms, which are then called ions. The Indian physicist M. N. Saha had recently shown how the temperature & pressure in the atmosphere of a star determine the extent to which various atoms are ionized.
Payne began a long project to measure the absorption lines in stellar spectra, & within two years produced a thesis for her doctoral degree, the first awarded for work at Harvard College Observatory. In it, she showed that the wide variation in stellar spectra is due mainly to the different ionization states of the atoms & hence different surface temperatures of the stars, not to different amounts of the elements. She calculated the relative amounts of eighteen elements & showed that the compositions were nearly the same among the different kinds of stars. She discovered, surprisingly, that the Sun & the other stars are composed almost entirely of hydrogen & helium, the two lightest elements. All the heavier elements, like those making up the bulk of the Earth, account for less than two percent of the mass of the stars.
Most of the mass of the visible universe is hydrogen, the lightest element, & not the heavier elements that are more prominent in the spectra of the stars! This was indeed a revolutionary discovery. Harlow Shapley sent Payne’s thesis to Professor Russell at Princeton, who informed her that the result was “clearly impossible.” To protect her career, Payne inserted a statement in her thesis that the calculated abundances of hydrogen & helium were “almost certainly not real.”
She then converted her thesis into the book Stellar Atmospheres, which was well-received by astronomers. Within a few years it was clear to everyone that her results were both fundamental & correct. Cecilia Payne had showed for the first time how to “read” the surface temperature of any star from its spectrum. She showed that Cannon’s ordering of the stellar spectral classes was indeed a sequence of decreasing temperatures & she was able to calculate the temperatures. The so-called Princeton Hertzsprung-Russell diagram, a plot of luminosity versus spectral class of the stars, could now be properly interpreted, & it became by far the most powerful analytical tool in stellar astrophysics.
From the time she finished her Ph.D. through the 1930s, Payne advised students, conducted research, & lectured—all the usual duties of a professor. Yet, because she was a woman, her only title at Harvard was “technical assistant” to Professor Harlow Shapley.
In 1933, Payne traveled to Europe to meet Russian astronomer Boris Gerasimovich, who had previously worked at the Harvard College Observatory & with whom she planned to write a book about variable stars. In Göttingen, Ger., she met Sergey Gaposchkin, a Russian astronomer who could not return to the Soviet Union because of his politics. Payne was able to find a position at Harvard for him. They married in 1934 & often collaborated on studies of variable stars. She was named a lecturer in astronomy in 1938, but even though she taught courses, they were not listed in the Harvard catalog until after World War II.
Despite being indisputably one of the most brilliant & creative astronomers of the 20C, Cecilia Payne was never elected to the elite National Academy of Sciences. But times were beginning to change. In 1956, she was finally made a full professor (the 1st woman so recognized at Harvard) & chair of the Astronomy Department.
Her fellow astronomers certainly came to appreciate her genius. In 1976, the American Astronomical Society awarded her the prestigious Henry Norris Russell Prize. In her acceptance lecture, she said, “The reward of the young scientist is the emotional thrill of being the 1st person in the history of the world to see something or to understand something.”
See:
American Museum of Natural History: Cecilia Payne & the Composition of the Stars
Encyclopedia Britannica: Cecilia Payne-Gaposchkin
Archival Collections:
Collections of Cecilia Payne- & Sergei Gaposchkin. Wolbach Library, Harvard & Smithsonian Center for Astrophysics, Cambridge, Mass.
Papers of Harlow Shapley, 1906-1966; HUG 4773.10 Box 89. Harvard University Archives, Harvard University, Cambridge, Mass.
Papers of Cecilia Helena Payne-Gaposchkin, 1924, circa 1950s-1990s, 2000; HUGB P182.5, P182.50. Harvard University Archives, Harvard University, Cambridge, Mass. Link.
Project PHaEDRA. Wolbach Library, Harvard & Smithsonian Center for Astrophysics, Cambridge, Mass. Link.
Radcliffe College Alumnae Association Records, ca.1894-2004; RG IX, Series 2, box 241. Schlesinger Library, Radcliffe Institute, Harvard University, Cambridge, Mass.
Wilbur Kitchener Jordan Records of the President of Radcliffe College, 1943-1960; RG II, Series 3, boxes 27, 60. Radcliffe College Archives, Schlesinger Library, Radcliffe Institute, Harvard University, Cambridge, Mass.
Bibliography:
Bartusiak, Marcia. 1993. “The Stuff of Stars.” The Sciences, no. September/October: 34–39.
Boyd, Sylvia. 2014. Portrait of a Binary : The Lives of Cecilia Payne & Sergei Gaposchkin. Penobscot Press.
DeVorkin, David. 2010. “Extraordinary Claims Require Extraordinary Evidence: C.H. Payne, H.N. Russell & Standards of Evidence in Early Quantitative Stellar Spectroscopy.” Journal Od Astronomical History & Heritage 13 (2): 139–44.
Gaposchkin, Cecilia Helena Payne. 1984. Cecilia Payne-Gaposchkin: An Autobiography (“The Dyer’s Hand”) & Other Recollections. Cambridge ; New York: Cambridge University Press.
Gaposchkin, Sergei. 1970. The Divine Scramble. Self-Published.
Gingerich, Owen, Katherine Haramundanis, & Dorrit Hoffleit. 2001. The Starry Universe: The Cecilia Payne-Gaposchkin Centenary. L. Davis Press.
Popova, Maria. 2017. “Stitching a Supernova: A Needlepoint Celebration of Science by Pioneering Astronomer Cecilia Payne.” Brain Pickings (blog). May 10, 2017.
Woodman, Jennifer. 2016. “Stellar Works: Searching for the Lives of Women in Science.” Dissertations & Theses, June.
"We Are Made of Starstuff.”
This landscape of “mountains” & “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s James Webb Space Telescope, this image reveals for the 1st time previously invisible areas of star birth. (NASA)
Dear old Hubble & the new James Webb Telescope, the largest space observatory to date, & thousands of scientists around the world will lead us into countless universes & 100 billion galaxies of composed of dying stars expelling dust & gas - elements & gases interchangeable with ours. We are part of infinity living on a tiny blue dot in space. “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.”
“Look again at that dot. That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every "superstar," every "supreme leader," every saint and sinner in the history of our species lived there-on a mote of dust suspended in a sunbeam.
"The Earth is a very small stage in a vast cosmic arena. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot.
"Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that help will come from elsewhere to save us from ourselves.
"The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the Earth is where we make our stand.
"It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we've ever known.”
―American astronomer Carl Sagan (1934-1996), Pale Blue Dot: A Vision of the Human Future in Space
Friday, July 1, 2022
This Day in Medieval Garden Myth & Reality
The Duke of Berry's Richest Hours.
Barthlemy of Eyck (?) And Jean Columbus
Limbourg Brothers. 1411-1416.
Condé Museum, Chantilly
July, the warmest month of the year, means harvesting crops and trimming herds. The landscape depicts the neighborhood where the rivers Boivre and Clain join. In the background, the triangular section of the Château de Poitiers in the background, preceded by the Palais des Comtes de Poitou.
Thursday, June 30, 2022
This Day in Medieval Garden Myth & Reality
ENLUMINURES EUROPE - VIe - XVIe s. - ILLUMINATED MANUSCRIPTS EUROPE
June 30th is the 181st day of the Gregorian calendar year.
It was usually the 12th day of the month of messidor in the French Republican calendar, officially called ARTICHAUT (ARTICHOKE) Day
Calligraphiae monumenta. Enlightenment: Joris Hoefnagel (also known as Georg Hufnagel), born in 1542 in Antwerp and died September 9, 1601 in Vienna (Austria), and Georg Bocskay (Hungarian, died in 1575). Date and place of publication: Vienna, Austria, 1561–1562-1591–1596. Latin manuscript illuminated on velin Getty Los Angeles, CA 90049. U.S.
Wednesday, June 29, 2022
17C Portraits Head Outside as Mankind Becomes "the Interpreter of Nature"
With the arrival of Anthony Van Dyck (1599–1641) at the court of Charles I in 1632, British portraiture took a turn toward the baroque that changed the course of British & colonial American painting in the 17-18C. The Elizabethan style had almost been completely replaced in England by the 1670s quickly giving way to a more volumetric style. In the British American colonies, this transition was copied through imported engravings after Peter Lely (1617–1680) & Godfrey Kneller (1648–1723).
This Day in Medieval Garden Myth & Reality
Sunday, June 26, 2022
History Blooms at Thomas Jefferson's Monticello
Friday, June 24, 2022
Roe v. Wade - US Supreme Court Overturns One Landmark Decision with Another Landmark Decision
17C Myth of Pomona & Vertumnus - Love Isn't Always Easy, even for Roman Garden Gods!
Pomona was the beautiful goddess of fruitful abundance in ancient Roman religion & myth. Pomona was said to be a wood nymph. The name Pomona comes from the Latin word pomum, "fruit," specifically orchard fruit. She was said to be a part of the Numia, the guardian spirits who watch over people, places, or homes. While Pomona watches over & protects fruit trees & cares for their cultivation, she is not actually associated with the harvest of fruit itself, but with tending the flourishing of the fruit trees. In artistic depictions she is generally shown with a platter of fruit or a cornucopia & perhaps her pruning knife
History Blooms at Thomas Jefferson's Monticello in Virginia
Thursday, June 23, 2022
17C Myth of Pomona & Vertumnus - Love Isn't Always Easy, even for Roman Garden Gods!
Pomona was the beautiful goddess of fruitful abundance in ancient Roman religion & myth. Pomona was said to be a wood nymph. The name Pomona comes from the Latin word pomum, "fruit," specifically orchard fruit. She was said to be a part of the Numia, the guardian spirits who watch over people, places, or homes. While Pomona watches over & protects fruit trees & cares for their cultivation, she is not actually associated with the harvest of fruit itself, but with tending the flourishing of the fruit trees. In artistic depictions she is generally shown with a platter of fruit or a cornucopia & perhaps her pruning knife
Pomona, the alluring wood nymph, actually cared nothing for the wild woods but cared only for her well-cultivated fruit filled gardens & orchards. And Pomona had a thing about men. She fenced her garden orchards, so the rude young men couldn't trample her plants & vines. She also kept her orchards enclosed, because she wanted to keep away the men who were attracted to her good looks. Even dancing satyrs(a cross between a man & a goat) were attracted to her beauty. Despite the fact that she preferred to be alone to care & nurture her trees, this beauty was continually besieged by suitors, in particular one persistent god named Vertumnus. Vertumnus had the ability to take different human guises & made numerous attempts to woo Pomona, but she turned him away each time.
The god Vertumus caught on to Pomona's aversion to men in her orchards & in her life generally. In Roman mythology, Vertumnus, the young, handsome god of changing seasons & patron of fruits, determined to win over Pomona. He could change his form at will according to Ovid's Metamorphoses (xiv). He came to her in various male disguises, which included, a reaper, an apple picker, a fisher, a solider, & more. Even with the disguises, she still never paid him the slightest bit of attention. One day Vertumnus tried a disguise as an old women. And Pomona finally allowed him to enter her garden, where he pretended to be interested in her fruit. But he finally told her he was more exquisite than her crops. After saying that, he kissed her passionately, but it wasn't enough. Vertumnus kept trying to sway her by telling her a story of a young women who rejected a boy who loved her; in despair, the boy killed hung himself, & Venus punished the girl by turning her to stone. This narrative warning of the extreme dangers of rejecting a suitor (the embedded tale of Iphis & Anaxarete) still did not seduce her. It just didn't work, of course.
The tale of Vertumnus & Pomona has been said to be the only purely Latin tale in Ovid's Metamorphoses. The subject of Vertumnus & Pomona appealed to European sculptors & painters of the 16th through the 18th centuries, providing a disguised erotic subtext in a scenario that contrasted youthful female beauty with an aged old woman. But it wasn't the old woman that ultimately won the day. In narrating the tale in the Metamorphoses, Ovid observed that the kind of kisses given by Vertumnus were never given by an old woman. In Ovid's myth, Pomona scorned the love of the woodland gods Silvanus & Picus, but finally married the brutally handsome Vertumnus.
History Blooms at Thomas Jefferson's Monticello in Virginia
Peggy Cornett at Thomas Jefferson's Monticello tells us that
The hardy annual Larkspur, Consolida ajacis, re-seeds abundantly in the Monticello Flower Gardens. Jefferson noted Larkspur blooming at Shadwell in July 1767, thought it suitable for naturalizing at Monticello "in the open ground on the west" in 1771, and sowed seed around his Roundabout flower border on April 8, 1810.
Larkspur, Consolida ajacis